Paper-Journal	IF
REC8 enhances stemness and promotes metastasis of colorectal cancer through BTK/Akt/β-catenin signaling pathway - Translational Oncology	6.2
Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis - cancer science	10
Overexpression of bone morphogenetic protein 7 reduces oligodendrocytes loss and promotes functional recovery after spinal cord injury - Journal of Cellular and Molecular Medicine	7.6
The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF- β and PD-L1 - Journal of Hematology & Oncology	27.5
FERMT3 mediates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling - Respiratory Research	8.9
Elevated ZBTB7A expression in the tumor invasive front correlates with more tumor budding formation in gastric adenocarcinoma - Journal of Cancer Research and Clinical Oncology	6.9
Sesamin attenuates PM2.5-induced cardiovascular injury by inhibiting ferroptosis in rats - Medical Oncology	5.1
Dexmedetomidine Protects Against Septic Liver Injury by Enhancing Autophagy Through Activation of the AMPK/SIRT1 Signaling Pathway - Frontiers in Pharmacology	6.6
Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats - MOLECULAR PLANT PATHOLOGY	11
Hydroxyurea-induced membrane fluidity decreasing as a characterization of neuronal membrane aging in Alzheimer's disease - Aging-US	5.9
3,4,5-O-tricaffeoylquinic acid alleviates ionizing radiation-induced injury in vitro and in vivo through regulating ROS/JNK/p38 signaling - Neural Regeneration Research	6.6
Interactive effects of water salinity and dietary methionine levels on growth performance, whole-body composition, plasma parameters, and expression of major nutrient metabolism genes in juvenile genetically improved farmed Tilapia (Oreochromis niloticus) - Aquaculture	6.4
Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid - British Journal of Nutrition	6
MiR-184 Combined with STC2 Promotes Endometrial Epithelial Cell Apoptosis in Dairy Goats via RAS/RAF/MEK/ERK Pathway - Genes	5
Lipophilic Extract and Tanshinone IIA Derived from Salvia miltiorrhiza Attenuate Uric Acid Nephropathy through Suppressing Oxidative Stress-Activated MAPK Pathways - AMERICAN JOURNAL OF CHINESE MEDICINE	8
Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian granulosa cells - Journal of Animal Science and Biotechnology	8
Covalent organic framework based multifunctional self-sanitizing face masks - Journal of Materials Chemistry A	21
COPS3 AS IncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype - Cellular Signalling	7.8
Salmonella Induces the cGAS-STING-Dependent Type I Interferon Response in Murine Macrophages by Triggering mtDNA Release - mBio	11.2
Tryptophan-rich diet ameliorates chronic unpredictable mild stress induced depression- and anxiety-like behavior in mice: The potential involvement of gut-brain axis - Food Research International	11.1
Cullin 4b-RING ubiquitin ligase targets IRGM1 to regulate Wnt signaling and intestinal homeostasis - CELL DEATH AND DIFFERENTIATION	23.5
miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways - Molecular Therapy-Nucleic Acids	12.9

Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine	9.7
The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome	
fusion via degradation of SNAP29 to promote virus replication - Autophagy	17.1
Sesamol ameliorates dextran sulfate sodiuminduced depression-like and anxiety-like behaviors in	7.8
colitis mice: the potential involvement of the gut-brain axis - Food & Function	
Neospora caninum infection induced mitochondrial dysfunction in caprine endometrial epithelial cells via downregulating SIRT1 - Parasites & Vectors	6.4
Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone - Nature Communications	23.2
Effect of selenium nanoparticles (SeNPs) supplementation on the sperm quality of fish after short-term storage - Aquaculture	6.4
Swainsonine-induced vacuolar degeneration is regulated by mTOR-mediated autophagy in HT22	7.6
cells - Toxicology Letters	7.0
CASP6 predicts poor prognosis in glioma and correlates with tumor immune microenvironment - Frontiers in Oncology	4.5
CCN6 improves hepatic steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis -	
Liver International	11.2
Autophagy Mediates Escherichia Coli-Induced Cellular Inflammatory Injury by Regulating Calcium	
Mobilization, Mitochondrial Dysfunction, and Endoplasmic Reticulum Stress - International	6.9
Journal of Molecular Sciences	
Induction of HOXA3 by Porcine Reproductive and Respiratory Syndrome Virus Inhibits Type I	
Interferon Response through Negative Regulation of HO-1 Transcription - Journal of Virology	10.2
Methionine enkephalin promotes white fat browning through cAMP/PKA pathway - Life Sciences	8
The mechanosensitive IncRNA Neat1 promotes osteoblast function through paraspeckle-	
dependent Smurf1 mRNA retention - Bone Research	20.4
Conditioned media-integrated microneedles for hair regeneration through perifollicular	20.4
angiogenesis - Bone Research	20.4
Botulinum toxin type a combined with transcranial direct current stimulation reverses the chronic	20.4
pain induced by osteoarthritis in rats - Bone Research	20.4
A C-type lectin containing two carbohydrate recognition domains participates in the antibacterial	20.4
response by regulating the JNK pathway and promoting phagocytosis - Bone Research	20.4
Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction -	6.9
International Journal of Molecular Sciences	0.5
Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian	8
granulosa cells - Journal of Animal Science and Biotechnology	
N-linoleyltyrosine protects neurons against Aβ1–40-induced cell toxicity via autophagy involving the CB2/AMPK/mTOR/ULK1 pathway - Brain Research Bulletin	6.3
Dihydroartemisinin broke the tumor immunosuppressive microenvironment by inhibiting YAP1	
expression to enhance anti-PD-1 efficacy - Brain Research Bulletin	6.3
METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222	
maturation in an m6A-dependent manner - Cellular & Molecular	14.2
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates	
in Hepatocellular Carcinoma - Hindawi	9.3
Angelica Yinzi alleviates 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis by inhibiting	
activation of NLRP3 inflammasome and down-regulating the MAPKs/NF-kB signaling pathway -	6.8
Saudi Pharmaceutical Journal	
Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular	10.2
carcinoma - Journal of Nanobiotechnology	10.2

RNA circles with minimized immunogenicity as potent PKR inhibitors - Molecular Cell	26.9
Trastuzumab aggravates radiation induced cardiotoxicity in mice - American Journal of Cancer	
Research	5.177
Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem	C 4
cells - Cell Adhesion & Migration	6.4
The binding between NPM and H2B proteins signals for the diabetes-associated centrosome	C 4
amplification - Cell Adhesion & Migration	6.4
Integrin α6 overexpression promotes lymphangiogenesis and lymphatic metastasis via activating	C 4
the NF-κB signaling pathway in lung adenocarcinoma - Cell Adhesion & Migration	6.4
Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing	16.4
Nrf2 activation - Redox Biology	16.4
Liraglutide Regulates Mitochondrial Quality Control System Through PGC-1α in a Mouse Model	16.4
of Parkinson's Disease - Redox Biology	16.4
Persistence Infection of TGEV Promotes Enterococcus faecalis	44.6
Infection on IPEC-J2 Cells - Biomedicine & Pharmacotherapy	11.6
Novel MEIOB variants cause primary ovarian insufficiency and non-obstructive azoospermia -	
Frontiers in Genetics	4.9
Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic	
aneurysm by adsorbing hsa-miR-149-5p - Pathology	7.3
Up-regulation of miR-208a aggravates high-fat -diet-induced cardiomyocytes injury by targeting	
IRS-2/PI3K/AKT pathway - Research Square	N/A
Telomerase reverse transcriptase (TERT) promotes neurogenesis after hypoxic-ischemic brain	
damage in neonatal rats - Research Square	N/A
Mitoquinone mitigates paraquat-induced A549 lung epithelial cell injury by promoting	
MFN1/MFN2-mediated mitochondrial fusion - Research Square	N/A
Shexiang Tongxin Dropping Pills Promote Macrophage Polarization-Induced Angiogenesis	
Against Coronary Microvascular Dysfunction via PI3K/Akt/mTORC1 Pathway - Frontiers in	6.6
Pharmacology	
NF-κB-coupled IL17 mediates inflammatory signaling and intestinal inflammation in Artemia	
sinica - Frontiers in Pharmacology	6.6
Honokiol Ameliorates Post-Myocardial Infarction Heart Failure Through Ucp3-Mediated Reactive	
Oxygen Species Inhibition - Frontiers in Pharmacology	6.6
BoNT/A alleviates neuropathic pain in osteoarthritis by down-regulating the expression of P2X4R	
in spinal microglia - Frontiers in Pharmacology	6.6
Hydroxysafflower Yellow A Inhibits Vascular Adventitial Fibroblast Migration via NLRP3	
Inflammasome Inhibition through Autophagy Activation - International Journal of Molecular	6.9
Sciences	
HDAC1/3-dependent moderate liquid-liquid phase separation of YY1 promotes METTL3	
expression and AML cell proliferation - Cell Death and Differentiation	23.5
Inhibition of pyruvate dehydrogenase kinase improves carbohydrate utilization in Nile tilapia by	
regulating PDK2/4-PDHE1α axis and insulin sensitivity - Animal Nutrition	8.2
Peroxisome proliferator-activated receptor gamma is essential for stress adaptation by	
maintaining lipid homeostasis in female fish - Phytomedicine	9.6
Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through	
upregulating the Nrf2 signaling pathway - Phytomedicine	9.6
Polystyrene microplastics induce mitochondrial damage in mouse GC-2 cells - Ecotoxicology and	
Environmental Safety	10.1
TDG suppresses the migration and invasion of human colon cancer cells via the DNMT3A/TIMP2	
axis - Ecotoxicology and Environmental Safety	10.1
and Little of the Little of th	

Safety Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice - Ecotoxicology and Environmental Safety MicroRNA-541-5p REgulates Type II Alveolar Epithelial Cell Proliferation and Activity by	0.1
Safety Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice - Ecotoxicology and Environmental Safety MicroRNA-541-5p Regulates Type II Alveolar Epithelial Cell Proliferation and Activity by	10.1
Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice - Ecotoxicology and Environmental Safety MicroRNA-541-5p REgulates Type II Alveolar Epithelial Cell Proliferation and Activity by	
Ecotoxicology and Environmental Safety MicroRNA-541-5p Regulates Type II Alveolar Epithelial Cell Proliferation and Activity by	
MicroRNA-541-5p REgulates Type II Alveolar Epithelial Cell Proliferation and Activity by	0.1
Twice of the transfer of the state of the st	5.1
Modulating the HMGB1 Expression - SHOCK	0.1
Activation of DDX58/RIG-I suppresses the growth of tumor cells by inhibiting STAT3/CSE	1.1
signaling in colon cancer - International Journal of Oncology	
Increased homocysteine regulated by androgen activates autophagy by suppressing the	
	2.2
mice - Bioengineered	
PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection - Journal of Virology	10.2
Hoxa5 inhibits adipocyte proliferation through transcriptional regulation of Ccne1 and blocking	9.8
JAK2/STAT3 signaling pathway in mice - Arabian Journal of Chemistry	<i>,</i> .0
Dexmedetomidine Attenuates Ferroptosis-Mediated Renal Ischemia/Reperfusion Injury and	5.6
Inflammation by Inhibiting ACSL4 via α2-AR - Frontiers in Pharmacology	<i>y</i> .0
GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered	0.1
neuronal ferroptosis - Ecotoxicology and Environmental Safety	
miR-196a Upregulation Contributes to Gefitinib Resistance through Inhibiting GLTP Expression -	5.9
International Journal of Molecular Sciences Food Allergy Indused Autism Like Rehavior is Associated with Cut Microbiata and Prain mTOR	
Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling - Journal of Asthma and Allergy	1
MiR-383-5n promotes apontosis of ovarian granulosa cells by targeting CIRP through the	
PI3K/AKT signaling pathway - Experimental Animals	2.4
Arctigenin attenuates paraquat-induced human lung epithelial A549 cell injury by suppressing	
ROS/p38 mitogen-activated protein kinases-mediated apoptosis - World Journal of Emergency 1.	.6
Medicine	
Brain Extract of Subacute Traumatic Brain Injury Promotes the Neuronal Differentiation of Human $ _{A}$	1.4
Neural Stem Cells via Autophagy - Journal of Clinical Medicine	г. т
Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor	3.5
chemo-immunotherapy - BMC Endocrine Disorders	
Diet-Induced Obesity Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma via	7.1
CX3CL1/CX3CR1 Axis - Journal of Immunology Research	
Glucocorticoids rapidly promote YAP phosphorylation via the cAMP-PKA pathway to repress mouse cardiomyocyte proliferative potential - International Journal of Molecular Sciences	5.9
Clostridium butyricum Inhibits Fat Deposition via Increasing the Frequency of Adipose Tissue-	
Resident Regulatory T Cells - International Journal of Molecular Sciences	5.9
IFGF2 positively regulates osteoclastogenesis via activating the FRK-CRFB pathway - Cell	0.7
FGF2 positively regulates osteoclastogenesis via activating the ERK-CREB pathway - Cell Proliferation	
Proliferation HIF-1g enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in	10.7
Proliferation HIF-1g enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in	10.7
Proliferation HIF-1α enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in neonatal rats under hypoxia - Cell Proliferation Temporal specificity of II -6 knockout in enhancing the thermogenic capability of brown adipose	
Proliferation HIF-1α enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in neonatal rats under hypoxia - Cell Proliferation Temporal specificity of IL-6 knockout in enhancing the thermogenic capability of brown adipose tissue - Cell Proliferation	0.7
Proliferation HIF-1α enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in neonatal rats under hypoxia - Cell Proliferation Temporal specificity of IL-6 knockout in enhancing the thermogenic capability of brown adipose tissue - Cell Proliferation [IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Neuroprotection of Triptolide against Amyloid-Beta1-42-induced toxicity via the	
1 33 7	2.5
CIENCIAS	
The correlation between proteoglycan 2 and neuropsychiatric systemic lupus erythematosus -	2.5
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS	2.5
Antidepressant effects of total alkaloids of Fibraurea recisa on improving corticosterone-induced	
apoptosis of HT-22 cells and chronic unpredictable mild stress-induced depressive-like behaviour	4.8
in mice - Pharmaceutical Biology	
Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat - Scientific	6.9
Reports	6.9
COX-2/sEH Dual Inhibitor Alleviates Hepatocyte Senescence in NAFLD Mice by Restoring	<i>c</i> 0
Autophagy through Sirt1/PI3K/AKT/mTOR - International Journal of Molecular Sciences	6.9
Geninin improves linid metabolism and sperm parameters in obese mice via regulation of mip-132	
expression ACTA BIOCHIMICA ET BIOPHYSICA SINICA	4.8
An electrochemical biosensor for the assessment of tumor immunotherapy based on the	
	4.8
BIOPHYSICA SINICA	1.0
Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in	
hepatocellular carcinoma - Molecular Cancer	52.7
Berberine Attenuates Hyperuricemia by Regulating Urate Transporters and Gut Microbiota -	
Molecular Cancer	52.7
Telomerase reverse transcriptase promotes angiogenesis in neonatal rats after hypoxic-ischemic	4.7
brain damage - PeerJ	
IL-17A promotes endothelial cell senescence by up-regulating the expression of FTO through	4.7
activating JNK signal pathway - PeerJ	4 7
<u> </u>	4.7
Combining Network Pharmacology with Experimental Validation to Elucidate the Mechanism of	4.7
Salvianolic Acid B in Treating Diabetic Peripheral Neuropathy - PeerJ	
Irreversible Electroporation Mediates Glioma Apoptosis via Upregulation of AP-1 and Bim:	3.1
Transcriptome Evidence - Brain Sciences	
Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-	
	9.3
VEGF-B Expression - Oxidative Medicine and Cellular Longevity	
Effect of eplerenone on cognitive impairment in spontaneously hypertensive rats - American	5.3
Journal of Translational Research	5.5
Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the	
IncRNA-SNHG1/HMGB1 Axis in Lipopolysaccharide-Induced Acute Lung Injury - Frontiers in	9.8
Immunology	
Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning -	6.9
International Journal of Molecular Sciences	6.9
Hoxa5 Inhibits the Proliferation and Induces Adipogenic Differentiation of Subcutaneous	2.7
Preadipocytes in Goats - Animals	2.7
CircMAN1A2 is upregulated by Helicobacter pylori and promotes development of gastric cancer -	12.5
Cell Death & Disease	13.5
Neuroprotective Effect of Angionojetin2 Is Associated with Angiogenesis in Mouse Brain	0.1
Following Ischemic Stroke - Brain Sciences	3.1
A novel C-type lectin from Trichinella spiralis mediates larval invasion of host intestinal epithelial	
cells - Veterinary Research	5.8
Construction of the Constr	

Computation and molecular pharmacology to trace the anti-rheumatoid activity of Angelicae Pubescentis Radix - BMC Complementary Medicine and Therapies	6.2
Pedigree-based study to identify GOLGB1 as a risk gene for bipolar disorder - Translational	
Psychiatry	8.5
Design, synthesis and biological evaluation of novel FAK inhibitors with better selectivity over IR than TAE226 - Biomedicine & Pharmacotherapy	11.6
The cell cycle gene centromere protein K (CENPK) contributes to the malignant progression and prognosis of prostate cancer - Translational Cancer Research	0.8
PIF4 Promotes Expression of HSFA2 to Enhance Basal Thermotolerance in Arabidopsis - International Journal of Molecular Sciences	6.9
HMSCs exosome-derived miR-199a-5p attenuates sulfur mustard-associated oxidative stress via	N/A
the CAV1/NRF2 signaling pathway - Research Square	
ILDR1 promotes infuenza A virus replication through binding to PLSCR1 - Scientific Reports	6.9
DCAF13 is essential for the pathogenesis of preeclampsia through its involvement in endometrial decidualization - Scientific Reports	6.9
Chi-Circ_0006511 Positively Regulates the Differentiation of Goat Intramuscular Adipocytes via	6.0
Novel-miR-87/CD36 Axis - INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES	6.9
Nociceptor Neurons are Involved in the Host Response to Escherichia coli Urinary Tract Infections	
- Journal of Inflammation Research	3.5
Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced	
cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells	3.5
Author links open overlay panel - Journal of Inflammation Research	
Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in	
non–small cell lung cancer - JCI insight	13.4
Evaluation of a novel EphA2 targeting peptide for triple negative breast cancer based on	
radionuclide molecular imaging - JCI insight	13.4
Deficit of perineuronal net induced by maternal immune activation mediates the cognitive	
impairment in offspring during adolescence - JCI insight	13.4
Dexmedetomidine pretreatment alleviates cerebral ischemia/reperfusion injury by inhibiting	
neuroinflammation through the JAK2/STAT3 pathway - Brazilian Journal of Medical and Biological	4.3
Research	
Spatially targeting and regulating tumor-associated macrophages using a raspberry-like micellar	
system sensitizes pancreatic cancer chemoimmunotherapy - Brazilian Journal of Medical and	4.3
Biological Research	7.5
FAdV-4 induce autophagy via the endoplasmic reticulum stress-related unfolded protein	
response - Brazilian Journal of Medical and Biological Research	4.3
Expression characteristic, immune signature, and prognosis value of EFNA family identified by	
multi-omics integrative analysis in pan-cancer - BMC Cancer	6.7
· · ·	
C-reactive protein inhibits C3a/C3aR-dependent podocyte autophagy in favor of diabetic kidney disease - FASEB JOURNAL	7.9
WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression	7.9
strategy - FASEB JOURNAL	
A novel FAM83H variant causes familial amelogenesis imperfecta with incomplete penetrance - Molecular Genetics & Genomic Medicine	3.3
Atractylenolide-1 targets SPHK1 and B4GALT2 to regulate intestinal metabolism and flora	
composition to improve inflammation in mice with colitis - Molecular Genetics & Genomic	3.3
Medicine	
Fish-specific Toll-like receptor 14 (TLR14) from Asian swamp eel (Monopterus albus) is involved in	
immune response to bacterial infection - Molecular Genetics & Genomic Medicine	3.3
	ļ

Saluisn-β contributes to endothelial dysfunction in monocrotaline-induced pulmonary arterial hypertensive rats - Biomedicine & Pharmacotherapy	11.6
Noninvasive Imaging of Tumor PD-L1 Expression Using [99mTc]Tc-Labeled KN035 with SPECT/CT	
- Biomedicine & Pharmacotherapy	11.6
Knockdown of DEAD-box 51 inhibits tumor growth of esophageal squamous cell carcinoma via	8.1
the PI3K/AKT pathway - WORLD JOURNAL OF GASTROENTEROLOGY	0.1
Construction of IncRNA-ceRNA Networks to Reveal the Potential Role of Lfng/Notch1 Signaling Pathway in Alzheimer's Disease - WORLD JOURNAL OF GASTROENTEROLOGY	8.1
Qishen Granule (QSG) Inhibits Monocytes Released From the Spleen and Protect Myocardial	
Function via the TLR4-MyD88-NF-κΒ p65 Pathway in Heart Failure Mice - Frontiers in	6.6
Pharmacology	
The Effects of Qinghao-Kushen and Its Active Compounds on the Biological Characteristics of	
Liver Cancer Cells - Evidence-based Complementary and Alternative Medicine	3.2
Effects of RhoA on depression-like behavior in prenatally stressed offspring rats - Evidence-based	3.2
Complementary and Alternative Medicine	
YB1 associates with oncogenetic roles and poor prognosis in nasopharyngeal carcinoma -	6.9
Scientific Reports	
Breast cancer cells-derived Von Willebrand Factor promotes VEGF-A-related angiogenesis	7.1
through PI3K/Akt-miR-205-5p signaling pathway - Toxicology and Applied Pharmacology	
LRP1-Mediated Endocytosis May Be the Main Reason for the Difference in Cytotoxicity of Curcin	6.6
and Curcin C on U2OS Osteosarcoma Cells - Toxins	
Lysine stimulates the development of the murine mammary gland at puberty via PI3K/AKT/mTOR	6.6
signalling axis - Toxins	
Interleukin-1β enhances the expression of two antimicrobial peptides in grass carp	6.6
(Ctenopharyngodon idella) against Vibrio mimicus via activating NF-κB pathway - Toxins	
Chaperonin CCT5 binding with porcine parvovirus NS1 promotes the interaction of NS1 and COPE	6.6
to facilitate viral replication - Toxins	
Gaq-PKD/PKCµ regulates the IkB transcription to limit the NF-kB mediated inflammatory	
response essential for early pregnancy - bioRxiv	N/A
The dysfunction of hormone-sensitive lipase induces lipid deposition and reprogramming of	
nutrient metabolism in fish - bioRxiv	N/A
sTREM-1 promotes the phagocytic function of microglia to induce hippocampus damage via the	
PI3K–AKT signaling pathway - Scientific Reports	6.9
Scutellarin suppresses triple-negative breast cancer metastasis by inhibiting TNFα-induced	
vascular endothelial barrier breakdown - Scientific Reports	6.9
Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic	
Therapy of Oral Squamous Cell Carcinoma - Heliyon	4
•	
Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by	7.9
regulating the miR-216b/IGF2BP2 axis - Biomarker Research	
Ginsenoside Rb3 upregulates sarcoplasmic reticulum Ca2+-ATPase expression and improves the	11.6
contractility of cardiomyocytes by inhibiting the NF-κB pathway - Biomedicine &	11.6
Pharmacotherapy	
Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged serum half-life and	11.6
alleviates fibrosis in chronic kidney disease - Biomedicine & Pharmacotherapy	
6-Gingerol suppresses cell viability, migration and invasion via inhibiting EMT, and inducing	
autophagy and ferroptosis in LPS-stimulated and LPS-unstimulated prostate cancer cells -	5.8
ONCOLOGY LETTERS	
piR-823 inhibits cell apoptosis via modulating mitophagy by binding to PINK1 in colorectal cancer	13.5
- Cell Death & Disease	13.3

Ginsenoside Rk1 regulates glutamine metabolism in hepatocellular carcinoma through inhibition	13.5
of the ERK/c-Myc pathway - Cell Death & Disease	13.5
Transcutaneous Electrical Acupoint Stimulation Pretreatment Alleviates Cerebral Ischemia-	
Reperfusion Injury in Rats by Modulating Microglia Polarization and Neuroinflammation Through	13.5
Nrf2/HO-1 Signaling Pathway - Cell Death & Disease	
Phosphatidylserine-Specific Phospholipase A1 Alleviates Lipopolysaccharide-Induced	
Macrophage Inflammation by Inhibiting MAPKs Activation - Biological and Pharmaceutical	3.7
Bulletin	
Norepinephrine acting on adventitial fibroblasts stimulates vascular smooth muscle cell	
proliferation via promoting small extracellular vesicle release - Theranostics	16.7
Network Pharmacology Analysis, Molecular Docking, and In Vitro Verification Reveal the Action	
Mechanism of Prunella vulgaris L. in Treating Breast Cancer - Evidence-based Complementary	3.2
and Alternative Medicine	3.2
Citronellal Attenuates Oxidative Stress–Induced Mitochondrial Damage through TRPM2/NHE1	
	6.5
, , , , , , , , , , , , , , , , , , , ,	0.5
Antioxidants (DMS 5) In the later of the lat	
Sesamin Ameliorates Fine Particulate Matter (PM2.5)-Induced Lung Injury via Suppression of	6.5
Apoptosis and Autophagy in Rats - Antioxidants	
TRIM25 inhibits spring viraemia of carp virus replication by positively regulating RIG-I signaling	6.5
pathway in common carp (Cyprinus carpio L.) - Antioxidants	0.5
miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in	3.3
mice - Journal of Gastrointestinal Oncology	5.5
METTL3 promotes proliferation and myogenic differentiation through m6A RNA	2.2
methylation/YTHDF1/2 signaling axis in myoblasts - Journal of Gastrointestinal Oncology	3.3
Exposure to short-chain chlorinated paraffins induces astrocyte activation via JAK2/STAT3	10.1
signaling pathway - Ecotoxicology and Environmental Safety	10.1
Fatty acid binding protein 5 promotes the proliferation, migration, and invasion of hepatocellular	
	8.3
response element binding protein - Cancer Biology & Therapy	
RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB	
signaling and ameliorates murine coliti - BMC Gastroenterology	3.3
Micellar nanoparticles inhibit the postoperative inflammation, recurrence and pulmonary	
	3.3
BMC Gastroenterology	3.3
"	
SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the	18.4
formation of stress granules - Signal Transduction and Targeted Therapy	
Plant green pigment of chlorophyllin attenuates inflammatory bowel diseases by suppressing	15.1
autophagy activation in mice - Cell Reports	
PAFAH1B3 predicts poor prognosis and promotes progression in lung adenocarcinoma - BMC	6.7
Cancer	0.7
Two NIS1-like proteins from apple canker pathogen (Valsa mali) play distinct roles in plant	4.5
recognition and pathogen virulence - Stress Biology	1.5
Superior Anticancer Potential of Nano-Paclitaxel Combined Bevacizumab Treatment in Ovarian	4.5
Cancer - Stress Biology	
NADPH Oxidase Mediates Oxidative Stress and Ventricular Remodeling through SIRT3/FOXO3a	СБ
Pathway in Diabetic Mice - Antioxidants	6.5
Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with	C 5
acetaminophen-induced liver injury - Antioxidants	6.5
1 / /	1

Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways - Journal of Translational Medicine	9.7
IKZF1 selectively enhances homologous recombination repair by interacting with CtIP and USP7	12.0
in multiple myeloma - International Journal of Biological Sciences	12.9
Determination of Biological and Molecular Attributes Related to Polystyrene Microplastic-Induced	
	4.5
Research and Public Health	
Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via	16.4
ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization - Redox Biology	16.4
Antarctic krill oil ameliorates liver injury in rats exposed to alcohol by regulating hile acids	16.4
metabolism and gut microbiota - Redox Biology	16.4
Bacillus amyloliquefaciens protects Nile tilapia against Aeromonas hydrophila infection and	16.4
alleviates liver inflammation induced by high-carbohydrate diet - Redox Biology	10.4
Lutein Can Alleviate Oxidative Stress, Inflammation, and Apoptosis Induced by Excessive Alcohol	7.9
to Ameliorate Reproductive Damage in Male Rats - Nutrients	7.9
Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-	4.5
Induced Lung Injury in Rats - International Journal of Environmental Research and Public Health	4.5
Astragalin attenuates depression-like behaviors and memory deficits and promotes M2 microglia	
polarization by regulating IL-4R/JAK1/STAT6 signaling pathway in a murine model of	4.5
perimenopausal depression - International Journal of Environmental Research and Public Health	
Optimal methionine supplementation improved the growth, hepatic protein synthesis and	
lipolysis of grass carp fry (Ctenopharyngodon idella) - International Journal of Environmental	4.5
Research and Public Health	
USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity -	23.2
Nature Communications	23.2
2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside ameliorates NAFLD via attenuating hepatic	
steatosis through inhibiting mitochondrial dysfunction dependent on SIRT5 - Nature	23.2
Communications	
TRAF6 modulates PD-L1 expression through YAP1-TFCP2 signaling in melanoma - Nature	23.2
Communications	23.2
Ethoxy-erianin phosphate and afatinib synergistically inhibit liver tumor growth and angiogenesis	23.2
via regulating VEGF and EGFR signaling pathways - Nature Communications	23.2
Small molecule nonsense mediated mRNA decay and MDM2-p53 inhibitors synergistically induce	N/A
apoptosis in cervical cancer cells - Research Square	11/7
Phenazopyridine promotes RPS23RG1/Rps23rg1 transcription and ameliorates Alzheimer-	N/A
associated phenotypes in mice - Research Square	11/7
Hsa_circ_0044301 Regulates Gastric Cancer Cell's Proliferation, Migration, and Invasion by	5.8
Modulating the Hsa-miR-188-5p/DAXX Axis and MAPK Pathway - Cancers	5.0
Anoctamin 1 controls bone resorption by coupling CI- channel activation with RANKL-RANK	23.2
signaling transduction - Nature Communications	23.2
Fucoidan ameliorates LPS-induced neuronal cell damage and cognitive impairment in mice -	23.2
Nature Communications	25.2
Fluvoxamine prompts the antitumor immune effect via inhibiting the PD-L1 expression on mice-	23.2
burdened colon tumor - Nature Communications	
P2X7R-NEK7-NLRP3 Inflammasome Activation: A Novel Therapeutic Pathway of Qishen Granule	3.5
in the Treatment of Acute Myocardial Ischemia - Journal of Inflammation Research	5.5
FBXL2 promotes E47 protein instability to inhibit breast cancer stemness and paclitaxel resistance	3.5
- Journal of Inflammation Research	2.5

TRMT6 is Suppressed by miR-191-5p and Functions as a Tumor Promoter in Ovarian Cancer - Research Square	N/A
Cadinane-type sesquiterpenoid dimeric diastereomers hibisceusones A-C from infected stems of	
Hibiscus tiliaceus with cytotoxic activity against triple-negative breast cancer cells - Research	N/A
Square	
The teratogenic effect of pregabalin on heart, liver and kidney in rats: a light microscopic, electron	4.2
microscopic and immunohistochemical study - BMC Pharmacology & Toxicology	
Transcription factor EB improves ventricular remodeling after myocardial infarction by regulating	N/A
tne autopnagy pathway - Research Square	, , .
A CRISPR-based instant DNA repositioning system and the early intranuclear life of HSV-1 -	N/A
bioRxiv	
WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-	
, , ,	N/A
kinase/extracellular signal-regulated kinase pathway - bioRxiv	
LINC02870 facilitates SNAIL translation to promote hepatocellular carcinoma progression -	N/A
DIORXIV	,
Cathelicidin hCAP18/LL-37 promotes cell proliferation and suppresses antitumor activity of	5.8
1,25(OH)2D3 in hepatocellular carcinoma - Cell Death Discovery	J.0
Lignans from Eucommia ulmoides Oliver leaves exhibit neuroprotective effects via activation of	5.8
the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H2O2-treated PC-12 cells - Cell Death Discovery	5.0
SERPINA5 promotes tumour cell proliferation by modulating the PI3K/AKT/mTOR signalling	7.6
pathway in gastric cancer - Journal of Cellular and Molecular Medicine	7.0
Up-regulation of miR-335 and miR-674-3p in the rostral ventrolateral medulla contributes to	7.6
stress-induced hypertension - Journal of Cellular and Molecular Medicine	7.0
Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-	23.2
infected wound healing - Nature Communications	25.2
METTL3-m6A methylation inhibits Type II Alveolar Epithelial Cells proliferation and viability by	
promoting PTEN mRNA stability and translation efficiency in the acute lung injury - Research	N/A
Square	
Salinity levels affect the lysine nutrient requirements and nutrient metabolism of juvenile	N/A
genetically improved farmed tilapia (Oreochromis niloticus) - bioRxiv	11/7
Palmitic Acid, A Critical Metabolite, Aggravates Cellular Senescence Through Reactive Oxygen	6.6
Species Generation in Kawasaki Disease - Frontiers in Pharmacology	0.0
Nanosized copper particles induced mesangial cell toxicity via the autophagy pathway - Brazilian	4.3
Journal of Medical and Biological Research	-1.5
Ablation of Tas1r1 Reduces Lipid Accumulation Through Reducing the de Novo Lipid Synthesis	4.3
and Improving Lipid Catabolism in Mice - Brazilian Journal of Medical and Biological Research	4.5
Cystathionine-β-synthase (CBS)/H2S system promotes lymph node metastasis of esophageal	6.7
squamous cell carcinoma (ESCC) by activating SIRT1 - Cells	0.7
Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by	
Impairing the PI3K/AKT/Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate	1.5
Cancer Cells - FOLIA BIOLOGICA	
Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle	1 5
arrest and apoptosis of human hepatoma cells (HepG2) - FOLIA BIOLOGICA	1.5
FHL1 mediates HOXA10 deacetylation via SIRT2 to enhance blastocyst-epithelial adhesion - Cell	E O
Death Discovery	5.8
Inhibition of the Occurrence and Development of Inflammation-Related Colorectal Cancer by	8.6
Fucoidan Extracted from Sargassum fusiforme - Journal of Agricultural and Food Chemistry	0.0

Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular	5.9
Oxidative Stress via Activating AKT/NRF2 Signaling - Molecules	
CD36 deficiency inhibits proliferation by cell cycle control in skeletal muscle cells - Frontiers in Physiology	6.6
Nicotinamide riboside ameliorates high-fructose-induced lipid metabolism disorder in mice via	
improving FGF21 resistance in the liver and white adipose tissue - Frontiers in Physiology	6.6
Small-Molecule Fluorophores for Near-Infrared IIb Imaging and Image-Guided Therapy of	
Vascular Diseases - CCS Chemistry	7.1
Nuclear Reclin 1 Destabilizes Retinoblastoma Protein to Promote Cell Cycle Progression and	
Colorectal Cancer Growth - Cancers	5.8
Lactiplantibacillus plantarum fermented barley extracts ameliorate high-fat-diet-induced muscle	г о
dysfunction via mitophagy - Cancers	5.8
ENO3 promotes colorectal cancer progression by enhancing cell glycolysis - Cancers	5.8
Myc suppresses male-male courtship in Drosophila - Cancers	5.8
PP1A prevents ROS-induced pyroptosis by inhibiting MAPK/caspase-3 in mouse adipose tissue -	5.8
Cancers	5.8
Transcranial Direct Current Stimulation Alleviates the Chronic Pain of Osteoarthritis by	4.5
Modulating NMDA Receptors in Midbrain Periaqueductal Gray in Rats - Journal of Pain Research	4.5
A Novel Small Molecular Prostaglandin Receptor EP4 Antagonist, L001, Suppresses Pancreatic	5.9
Cancer Metastasis - Molecules	3.9
Developmental Exposure to Bisphenol a Degrades Auditory Cortical Processing in Rats -	5.9
Molecules	5.9
Snail regulates Hippo signalling-mediated cell proliferation and tissue growth in Drosophila -	8.7
Open Biology	0.7
Inhibition of Rho/ROCK signaling pathway participates in the cardiac protection of exercise	6.9
training in spontaneously hypertensive rats - Scientific Reports	0.5
CYLD deubiquitinates plakoglobin to promote Cx43 membrane targeting and gap junction	15.1
assembly in the heart - Cell Reports	13.1
Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor	40.7
modulates glucose metabolism - Cell Metabolism	10.7
A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma - Cell	40.7
Metabolism	
Transcriptome-based drug repositioning identifies TPCA-1 as a potential selective inhibitor of	8.5
esophagus squamous carcinoma cell viability - International Journal of Molecular Medicine	
FuZhengHuaYuJiangZhuTongLuoFang Prescription Modulates Gut Microbiota and Gut-Derived	5.9
Metabolites in UUO Rats - Frontiers in Cellular and Infection Microbiology	
Role of salivary glycopatterns for oral microbiota associated with gastric cancer - Frontiers in	5.9
Cellular and Infection Microbiology	
Novel MDM2 Inhibitor XR-2 Exerts Potent Anti-Tumor Efficacy and Overcomes Enzalutamide	6.6
Resistance in Prostate Cancer - Frontiers in Pharmacology	
Atorvastatin remodels lipid distribution between liver and adipose tissues through blocking	6.6
lipoprotein efflux in fish - Frontiers in Pharmacology	
SKLB-14b, a novel oral microtubule-destabilizing agent based on hydroxamic acid with potent	6.6
anti-tumor and anti-multidrug resistance activities - Frontiers in Pharmacology	
Mechanistic Studies of Gypenosides in Microglial State Transition and its Implications in	6.6
Depression-Like Behaviors: Role of TLR4/MyD88/NF-kB Signaling - Frontiers in Pharmacology	
Microglial Tmem59 Deficiency Impairs Phagocytosis of Synapse and Leads to Autism-Like Behaviors in Mice - Journal of Neuroscience	10.2
IBBURNOS IN MUCA - INTITIAL NI MATINICIANCA	

	1
ASCL2 Affects the Efficacy of Immunotherapy in Colon Adenocarcinoma Based on Single-Cell RNA Sequencing Analysis - Front Immunol.	9.8
Host Cells Actively Resist Porcine Reproductive and Respiratory Syndrome Virus Infection via the	
IRF8-MicroRNA-10a-SRP14 Regulatory Pathway - Journal of Virology	10.2
Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-	
Vps41/miR-26a-5p/CaMKIV regulatory network - Experimental Neurology	8.7
Macromolecular NO-Donor Micelles for Targeted and Augmented Chemotherany against	0.7
Prostate Cancer - Experimental Neurology	8.7
Alteration of LncRNA expression in mice placentae after frozen embryo transfer is associated with	8.7
increased fetal weight - Experimental Neurology	0.7
Sesamol ameliorates dextran sulfate sodium-induced depression-like and anxiety-like behaviors	8.7
in colitis mice: the potential involvement of the gut–brain axis - Experimental Neurology	0.7
Repurposed antipsychotic chlorpromazine inhibits colorectal cancer and pulmonary metastasis by	8.7
inducing G2/M cell cycle arrest, apoptosis, and autophagy - Experimental Neurology	•
MiR-155 deficiency protects renal tubular epithelial cells from telomeric and genomic DNA	16.7
damage in cisplatin-induced acute kidney injury - Theranostics	
MiR-148a deletion protects from bone loss in physiological and estrogen-deficient mice by	5.8
targeting NRP1 - Cell Death Discovery	
ZIC5 promotes human hepatocellular carcinoma cell proliferation through upregulating COL1A1 -	3.3
Journal of Gastrointestinal Oncology	
The fibroblast growth factor receptor antagonist SSR128129E inhibits fat accumulation via	3.3
suppressing adipogenesis in mice - Journal of Gastrointestinal Oncology	
Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA	5.8
- Cell Death Discovery Noteh 1 signalling controls the differentiation and function of muclaid derived suppresses cells in	
Notch1 signalling controls the differentiation and function of myeloid-derived suppressor cells in systemic lupus erythematosus - Cell Death Discovery	5.8
Hsa_Circ_0000826 inhibits the proliferation of colorectal cancer by targeting AUF1 - Cell Death	F 0
Discovery	5.8
BCAA catabolism drives adipogenesis via an intermediate metabolite and promotes subcutaneous	NI / A
adipose tissue expansion during obesity - bioRxiv	IN/A
ST6GAL1 inhibits metastasis of hepatocellular carcinoma via modulating sialylation of MCAM on	N/A
cell surface - bioRxiv	14/7
Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis	7.1
underlines the different mechanisms of virus-host interactions - virulence	, · · ·
Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active	6.6
Compounds of Eucommiae Folium in Mice - Frontiers in Pharmacology	
MEKK4-mediated Phosphorylation of HOXA10 at Threonine 362 facilitates embryo adhesion to	5.8
the endometrial epithelium - Cell Death Discovery	
A novel lncRNA lncSAMD11-1: 1 interacts with PIP4K2A to promote endometrial decidualization	9.4
by stabilizing FoxO1 nuclear localization - International Journal of Biochemistry & Cell Biology	7.00
Elevation of α -1,3 fucosylation promotes the binding ability of TNFR1 to TNF- α and contributes	7.60
to osteoarthritic cartilage destruction and apoptosis - Arthritis Research & Therapy Ginconoside Ph1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to	
Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke - Redox Biology	16.4
Dysbiosis of Gut Microbiota and Intestinal Barrier Dysfunction in Pigs with Pulmonary	
Inflammation Induced by Mycoplasma hyorhinis Infection - mSystems	7.8
KIM-1 augments hypoxia-induced tubulointerstitial inflammation through uptake of small	
extracellular vesicles by tubular epithelial cells - Molecular Therapy	17.1
The second of th	

DJ-1 Protein Inhibits Apoptosis in Cerebral Ischemia by Regulating the Notch1 and Nuclear Factor Erythroid2-Related Factor 2 Signaling Pathways - Molecular Therapy	17.1
Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental	
non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway - Molecular Therapy	17.1
[Glv14]-Humanin inhihits an angiotensin II-induced vascular smooth muscle cell phenotypic	
switch via ameliorating intracellular oxidative stress - human and experimental toxicology	4.3
A neutrophil-mediated carrier regulates tumor stemness by inhibiting autophagy to prevent	
	4.3
toxicology	1.5
Rational construction of controllable autoimmune diabetes model denicting clinical features -	
plos one	5.6
SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats - Ovidative	
Medicine and Cellular Longevity	9.3
Mast cell-derived exosomal miR-181a-5n modulated trophoblast cell viability, migration, and	
invasion via YY1/MMP-9 axis - Journal of Clinical Laboratory Analysis	3.7
PRMA6 is assential for gametogenesis and functions in post transcriptional roles affecting moiotic	
cohesin subunits - Protein & Cell	19.4
Resveratrol improves estrus disorder induced by bisphenol A through attenuating oxidative	
, , , , , , , , , , , , , , , , , , , ,	19.4
stress, autophagy, and apoptosis - Protein & Cell	
SEMA4D/PlexinB1 promotes AML progression via activation of PI3K/Akt signaling - Journal of Translational Medicine	9.7
Gamma synuclein promotes cancer metastasis through the MKK3/6-p38MAPK cascade -	12.9
International Journal of Biological Sciences	
Mebendazole-Induced Blood-Testis Barrier Injury in Mice Testes by Disrupting Microtubules in	6.9
Addition to Triggering Programmed Cell Death - International Journal of Molecular Sciences	
C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the	6.9
activation of the NLRP3 inflammasome - International Journal of Molecular Sciences	
Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and	6.9
Osteogenic Differentiation In Vitro - International Journal of Molecular Sciences	<u> </u>
<u> </u>	6.9
Exosomes From Human Umbilical Cord Mesenchymal Stem Cells Treat Corneal Injury via	5.4
Autophagy Activation - Front. Bioeng. Biotechnol	
Folic acid intervention changes liver Foxp3 methylation and ameliorates the damage caused by	5.4
Th17/Treg imbalance after long-term alcohol exposure - Front. Bioeng. Biotechnol	
Downregulation of TEX11 promotes S-Phase progression and proliferation in colorectal cancer	5.4
cells through the FOXO3a/COP1/c-Jun/p21 axis - Front. Bioeng. Biotechnol	
Influence of dietary sodium taurocholate on the growth performance and liver health of Nile	5.4
tilapia (Oreochromis niloticus) - Front. Bioeng. Biotechnol	
LiuweiDihuang improved cognitive functions in SAMP8 mice by inhibiting COX-2 expression and	5.4
subsequent neuroinflammation - Front. Bioeng. Biotechnol	
Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of	5.4
AMPK/mTOR pathway - Front. Bioeng. Biotechnol	
Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by	10
promoting cell migration in extracellular matrix - Stem Cell Research & Therapy	
Eupalinolide B inhibits hepatic carcinoma by inducing ferroptosis and ROS-ER-JNK pathway	8.9
CNS Neuroscience & Therapeutics	
Notoginsenoside R1 Ameliorates Cardiac Lipotoxicity Through AMPK Signaling Pathway -	6.6
Frontiers in Pharmacology	

CRISPR-Cas9-Mediated NPC1 Gene Deletion Enhances HEK 293 T Cell Adhesion by Regulating E-Cadherin - International Journal of Biological Sciences Kif15 Is Required in the Development of Auditory System Using Zebrafish as a Model - Frontiers in Molecular Neuroscience Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α-SXBP1-GATA4 pathway - Research Square 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	3
Kif15 Is Required in the Development of Auditory System Using Zebrafish as a Model - Frontiers in Molecular Neuroscience Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α-sXBP1-GATA4 pathway - Research Square 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA–encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	
Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α-SXBP1-GATA4 pathway - Research Square 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA–encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	
sXBP1-GATA4 pathway - Research Square 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	/A
3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA–encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	/A
inflammasome activation via autophagy in THP-1 macrophages - Research Square A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	
A new circular RNA–encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus	/Λ
· · · · · · · · · · · · · · · · · · ·	/^
(TGEV)–induced mitochondrial dysfunction - J Biol Chem	8
Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic 23.	3.2
niche - Nature Communications	,. _
Histone Acetyltransferase CfGcn5-Mediated Autophagy Governs the Pathogenicity of	1.2
Colletotrichum fructicola - mBio	
Characterization of a novel pyruvate kinase from Trichinella spiralis and its participation in sugar	8
metabolism, larval molting and development - PLOS NEGLECTED TROPICAL DISEASES	
Tanshinone IIA Regulates Keap1/Nrf2 Signal Pathway by Activating Sestrin2 to Restrain 6.8	8
Pulmonary Fibrosis - PLOS NEGLECTED TROPICAL DISEASES	
Diffuse Large B-Cell Lymphoma Promotes Endothelial-to-Mesenchymal Transition via 5.1	1
WNT10A/Beta-Catenin/Snail Signaling - Oncology	
Kinetochore-associated protein 1 promotes the invasion and tumorigenicity of cervical cancer 5.1	1
cells via matrix metalloproteinase-2 and matrix metalloproteinase-9 - Oncology	
CCNB1IP1 stabilizes MYCN through suppression of Fbxw7-mediated degradation and facilitates	/A
the growth of MYCN-amplified neuroblastoma - Research Square BtpB inhibits innate inflammatory responses in goat alveolar macrophages through the TLR/NF-κ	
B pathway and NLRP3 inflammasome during Brucella infection - Research Square	/A
Dual Inhibition of H3K9me2 and H3K27me3 Promotes Tumor Cell Senescence without Triggering	
the Secretion of SASP - Int. J. Mol. Sci.	9
Therapeutic Potential of Parillaldehyde in Ameliorating Vulvoyaginal Candidiasis by Reducing	
Vaginal Oxidative Stress and Apoptosis - Antioxidants	5
Synthesis and Biological Evaluation of PEGylated MWO4 Nanoparticles as Sonodynamic AID	
Inhibitors in Treating Diffuse Large B-Cell Lymphoma - Molecules	9
Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent	
endocytosis entry of SARS-CoV-2 into host cells - Virologica Sinica	1
A novel synthetic chalcone derivative, 2,4,6-trimethoxy-4'-nitrochalcone (Ch-19), exerted anti-	
tumor effects through stimulating ROS accumulation and inducing apoptosis in esophageal 6.1	1
cancer cells - Virologica Sinica	
Slit guidance ligand 2 promotes the inflammatory response of periodentitis through activation of	4
the NF-kB signaling pathway - Virologica Sinica	1
I ANA regulates miR-155/GATA3 signaling axis by enhancing c-lun/c-Fos interaction to promote	1
the proliferation and migration of KSHV-infected cells - Virologica Sinica	ı
PIN3 positively regulates the late initiation of ovule primordia in Arabidopsis thaliana - Virologica 6.1	1
Sinica 6.1	I
Protective Effect of Buyang Huanwu Decoction on Diabetes-Induced Damage to Hippocampal	5
Neurons by Regulating PI3K-AKT/Bcl-2 Pathway - pakistan J. zool.	J
All-trans retinoic acid enhanced the antileukemic efficacy of ABT-199 in acute myeloid leukemia	
by downregulating the expression of S100A8 - International Immunopharmacology	

Circular DNIA ACTA1 Acta as a Change for miD 100s En and miD 422 to Dogulate Daving Muchlant	
Circular RNA ACTA1 Acts as a Sponge for miR-199a-5p and miR-433 to Regulate Bovine Myoblast	7
Development through the MAP3K11/MAP2K7/JNK Pathway - International	1
Immunopharmacology	
Grpel2 alleviates myocardial ischemia/reperfusion injury by inhibiting MCU-mediated	7
mitochondrial calcium overload - International Immunopharmacology	
Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch	7
sensation in mice - International Immunopharmacology	
DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via	7
the DDIT3-SQSTM1-STING pathway - International Immunopharmacology	
Dulaglutide Improves Gliosis and Suppresses Apoptosis/Autophagy Through the PI3K/Akt/mTOR	4
Signaling Pathway in Vascular Dementia Rats - heliyon	
Eupalinolide A induces autophagy via the ROS/ERK signaling pathway in hepatocellular carcinoma	11.1
cells in vitro and in vivo - International Journal of Oncology	
HMGA2 mediates Cr (VI)-induced metabolic reprogramming through binding to mitochondrial D-	10.1
Loop region - Ecotoxicology and Environmental Safety	10.1
Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62–Keap1–	7.8
Nrf2 pathway - Food & Function	7.0
Enhanced effect of combining bone marrow mesenchymal stem cells (BMMSCs) and pulsed	N/A
electromagnetic fields (PEMF) to promote recovery after spinal cord injury in mice - MedComm	11/7
Identification and Validation of Novel Biomarkers for Hepatocellular Carcinoma, Liver	
Fibrosis/Cirrhosis and Chronic Hepatitis B via Transcriptome Sequencing Technology - Journal of	4.962
Hepatocellular Carcinoma	
Neuroprotective effects of a new triterpenoid from edible mushroom on oxidative stress and	
apoptosis through the BDNF/TrkB/ERK/CREB and Nrf2 signaling pathway in vitro and in vivo -	4.962
Journal of Hepatocellular Carcinoma	
Journal of Reputocental Caremonia	
	5.9
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US	
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US	5.9 9.7
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine	9.7
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine	
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusebacterium puelestum Affects Cell Apontosis by Regulating Intestinal Flora and Metabolites to	9.7 9.3
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusebacterium puelestum Affects Cell Apontosis by Regulating Intestinal Flora and Metabolites to	9.7
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to	9.7 9.3 8.2
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol	9.7 9.3
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice -	9.7 9.3 8.2
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease	9.7 9.3 8.2
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells	9.7 9.3 8.2 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNE to activate EGER ELK1 signaling and induce cross talk between	9.7 9.3 8.2 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNE to activate EGER ELK1 signaling and induce cross talk between	9.7 9.3 8.2 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square	9.7 9.3 8.2 13.5 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in	9.7 9.3 8.2 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square	9.7 9.3 8.2 13.5 13.5
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square	9.7 9.3 8.2 13.5 13.5 N/A
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square	9.7 9.3 8.2 13.5 13.5 N/A N/A N/A
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square	9.7 9.3 8.2 13.5 13.5 N/A N/A
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square R male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis - development	9.7 9.3 8.2 13.5 13.5 N/A N/A N/A N/A 9.7
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis - development Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4+ T cells	9.7 9.3 8.2 13.5 13.5 N/A N/A N/A N/A
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis - development Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4+ T cells against apoptosis and immune dysregulation in sepsis - development	9.7 9.3 8.2 13.5 13.5 N/A N/A N/A 9.7 9.7
MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer - Aging-US Cisplatin resistance-related multi-omics differences and the establishment of machine learning models - Journal of Translational Medicine IncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia - Hindawi Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer - Front Microbiol Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice - Cell Death & Disease Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair - Cell Death & Disease THAP7-AS1 recruits the SWI/SNF to activate EGFR ELK1 signaling and induce cross talk between tumor-associated macrophages and breast cancer cells - Research Square Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1 - Research Square A male germ-cell-specific ribosome controls male fertility - Research Square WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT - Research Square FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis - development Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4+ T cells against apoptosis and immune dysregulation in sepsis - development	9.7 9.3 8.2 13.5 13.5 N/A N/A N/A N/A 9.7

The CfSnt2-Dependent Deacetylation of Histone H3 Mediates Autophagy and Pathogenicity of	4.1
Colletotrichum fructicola - Journal of Fungi	
ανβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide	100
against malignant melanoma - Journal of Nanobiotechnology	10.2
Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights	4.9
Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer - Frontiers in Genetics	
Triptolide promotes ferroptosis by suppressing Nrf2 to overcome leukemia cell resistance to	5.9
doxorubicin - Molecular Medicine Reports	
The Role of CD147 in Pathological Cardiac Hypertrophy Is Regulated by Glycosylation - Hindawi	9.3
A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage	17.3
regeneration - Cell Discovery	17.5
MG53 protein rejuvenates hUC-MSCs and facilitates their therapeutic effects in AD mice by	16.4
activating Nrf2 signaling pathway - Redox Biology	10.4
Cationic Mechanosensitive Channels Mediate Trabecular Meshwork Responses to Cyclic	C C
Mechanical Stretch - Frontiers in Pharmacology	6.6
Role of ammonia for brain abnormal protein glycosylation during the development of hepatitis B	0.4
virus-related liver diseases - Cell & Bioscience	8.4
PP2A promotes apoptosis and facilitates docetaxel sensitivity via the PP2A/p-eIF4B/XIAP	
signaling pathway in prostate cancer - ONCOLOGY LETTERS	5.8
L-arginine stimulates the proliferation of mouse mammary epithelial cells and the development of	
	5.8
ONCOLOGY LETTERS	
Discovery of a Highly Potent and Orally Bioavailable STAT3 Dual Phosphorylation Inhibitor for	
Pancreatic Cancer Treatment - ONCOLOGY LETTERS	5.8
Proto-oncogene FAM83A contributes to casein kinase 1–mediated mitochondrial maintenance	
and white adipocyte differentiation - Journal of biology chemistry	8.8
Discovery of a Novel Potent STAT3 Inhibitor HP590 with Dual p-Tyr705/Ser727 Inhibitory Activity	
for Gastric Cancer Treatment - Biomedicines	3
Aqueous Extract and Polysaccharide of Aconiti Lateralis Radix Induce Apoptosis and G0/G1 Phase	
Cell Cycle Arrest by PI3K/AKT/mTOR Signaling Pathway in Mesangial Cells - Hindawi	9.3
Long Non-Coding RNA uc003jox.1 Promotes Keloid Fibroblast Proliferation and Invasion Through	
Activating the PI3K/AKT Signaling Pathway - Hindawi	9.3
Proteomic analysis of skeletal muscle in Chinese hamsters with type 2 diabetes mellitus reveals	
· · · · · · · · · · · · · · · · · · ·	9.3
that OPLAH downregulation affects insulin resistance and impaired glucose uptake - Hindawi	
A novel small molecule RK-019 inhibits FGFR2-amplification gastric cancer cell proliferation and	6.6
induces apoptosis in vitro and in vivo - Frontiers in Pharmacology	
The Adaptive Characteristics of Cholesterol and Bile Acid Metabolism in Nile Tilapia Fed a High-	9.3
Fat Diet - Hindawi	
p53-Dependent Mitochondrial Compensation in Heart Failure With Preserved Ejection Fraction -	7.7
Journal of the American Heart Association	
Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer - Front Oncol	4.5